
International Journal of Technology 10(7): 1395-1406
ISSN 2086-9614 © IJTech 2019

PREVENTING AND RECTIFYING CLOUD QUALITY OF SERVICE VIOLATION

THROUGH ADAPTIVE RESOURCE SCALING AND REPLICATION

Tong-Sheng Wong1, Gaik-Yee Chan 1*, Fang-Fang Chua1

1Faculty of Computing and Informatics, Multimedia University, Persiaran Multimedia, 63100

Cyberjaya, Selangor, Malaysia

(Received: November 2018 / Revised: January 2019 / Accepted: September 2019)

ABSTRACT

One major challenge in delivering and accessing cloud applications is the management of Quality

of Services (QoS). It is mandatory for cloud service providers to ensure their performance and

fulfil QoS, as defined in the Service Level Agreement (SLA). In this paper, we propose a Scaling

and Fault Tolerance (SFT) algorithm to deploy preventive or remedial measures based on 16

decision rules for QoS violation detection and prediction. We simulate the SFT algorithm in a

cloud simulator with four scenarios to measure its effectiveness in handling events such as faulty

virtual machines (VMs), or over and under-provisioning of resources. Our experimental results

show that the proposed SFT algorithm performs effectively (close to a 90%100% effective rate)

in providing preventive or remedial measures and reducing the number of VMs when they are

not needed.

Keywords: Cloud computing; Fault tolerance; Quality of service violation; Replication;

Scalability

1. INTRODUCTION

According to the National Institute of Standards and Technology (NIST) (Mell & Grance, 2011),

cloud computing has emerged as one compelling paradigm for providing convenient and on-

demand network access to a shared pool of configurable computing resources that can be rapidly

provisioned and released with minimal management effort or service provider interaction. This

has made possible the hosting of cloud services provided by cloud service providers, such as

Software as a Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

An increasing number of organizations are adapting to cloud computing platforms for their daily

business functions. These organizations are showing determination in embracing Industry 4.0, as

cloud computing helps to pool and centralize information for making better business decision.

The focus of this paper is therefore on the Quality of Service (QoS) pertaining to SaaS.

Cloud service providers are mandated to enforce service performance and the quality of their

services, as defined in the Service Level Agreement (SLA). From their perspective, maintaining

the conditions defined in the SLA and maximizing the QoS metrics are important tasks. We define

QoS metrics as CPU load, response time and throughput, as elements of the performance aspect,

for evaluating cloud services (Bardsiri & Hashemi, 2014).

Cloud monitoring tools measure and collect cloud QoS data, and this information is used for

making decisions on scaling cloud resources horizontally, and also for providing fault tolerance

*Corresponding author’s email: gychan58@yahoo.com, Tel. +60122097865
Permalink/DOI: https://doi.org/10.14716/ijtech.v10i7.3252

1396 Preventing and Rectifying Cloud Quality of Service Violation Through
Adaptive Resource Scaling and Replication

if necessary. Therefore, using QoS metrics for modelling the performance of cloud services

could enable better decision making with regard to preventing or rectifying any cloud QoS

violation by correlating the decision rules with the QoS metrics, such as response time and

throughput. A detailed description of the formulation of these decision rules can be found in the

study by Wong et al. (2018).

The work by Wong et al. (2019) has proven the feasibility of using horizontal scaling as a

preventive measure and fault tolerance mechanism of replication, as rectification for QoS

violations. In this paper, we propose a scaling and fault tolerance (SFT) algorithm and evaluate

its effectiveness based on CloudSim Plus (Filho et al., 2017), a toolkit with libraries for the

simulation of cloud computing scenarios. A total of four scenarios were used in the simulation

to evaluate the effectiveness of the proposed SFT algorithm. One scenario provided a preventive

measure for probable cloud QoS violation; another a remedial measure for certain cloud QoS

violation; while the other two monitored consideration of over- or under- provisioning of virtual

machines (VMs). One example for monitoring the provisioning of VM is by reducing the

number of idle VM based on real-world QoS measurement of cloud services, as discussed by

Zheng et al. (2014).

Our experimental results show that the proposed SFT algorithm performs effectively (close to a

90%100% effective rate) in providing preventive or remedial measures and reducing the

number of VMs when they are not needed, consequently guaranteeing QoS performance, as

defined in the cloud services SLA. Additionally, the 16 decision rules determine QoS violation

at four levels, namely no violation, normal, probable violation and certain violation; unlike many

other works, that only define violations as normal or violation, the four levels are able to detect

and predict whether a violation will occur or not before it actually happens. The SFT algorithm

takes appropriate action to prevent the occurrence of actual violation, or rectifies it if violation

has occurred. Together with the 16 decision rules, it thus contributes towards another aspect of

detection, prediction, prevention and rectification measures with regard to response time and

throughput for cloud QoS violations.

Unlike the work of Aruna and Aramudhan (2016), which includes cost in its proposed method

of using fuzzy sets to shortlist providers based on the QoS agreed in the SLA, the SFT algorithm

does not include the cost factor in resolving QoS violations. This will be left for future work.

Scalability is defined as the handling of increasing workloads by allocating more resources to

the system (Lehrig et al., 2015). There are two general scalability approaches, namely horizontal

and vertical scaling. Horizontal scaling involves adding or removing VMs to spread the load

across multiple distributed VMs, while vertical scaling involves increasing and decreasing the

power of an existing VM by means of more memory (RAM), storage (HDD/SSD), or processors

(CPUs). In this paper, the focus is on application scalability, which is defined as the maintenance

of cloud services application performance goals by avoiding QoS violation events when the

workload submitted by users increases (Kuperberg et al., 2011).

Fault tolerance, as defined by Ganesh et al. (2014), is the ability of the cloud environment to

handle unanticipated changes, such as hardware failure, software defects or network congestion.

Two standard policies, namely proactive and reactive fault tolerance, can be used for real-time

cloud applications. Proactive fault tolerance can predict faults, errors and failures, and once a

suspicious component has been detected, it will be replaced proactively. Proactive fault tolerance

techniques include pre-emptive migration, software rejuvenation and self-healing.

Reactive fault tolerance reduces the effect of failure on applications being executed when the

failure effectively occurs. Examples of reactive fault tolerance techniques are check pointing or

restart, replication, job migration and task resubmission. In this paper, the focus is on

Wong et al. 1397

implementing a reactive fault-tolerance policy on computation failure, which involves hardware

or infrastructure failure.

2. METHODOLOGY

This section presents an overview of our system incorporated with the proposed SFT algorithm.

Based on the work of Wong et al. (2018), 16 decision rules were derived for the detection and

prediction of cloud QoS violations. In the study by Wong et al. (2019), adaptive mechanisms,

such as horizontal scaling and fault tolerance mechanisms, were proven to be feasible in

preventing and rectifying such violations. In this paper, we propose a scaling and fault tolerance

(SFT) algorithm which adopts the adaptive mechanisms to provide preventive and remedial

measures for handling cloud QoS violations, as well as for monitoring over- or under-

provisioning of resources in the cloud environment; please refer to Figure 1 for an overview of

the system. The system architecture design includes a cloud broker, a number of servers hosting

several running virtual machines (VMs) in a data centre, with other functions such as cloud

monitoring, cloud QoS detection and prediction, and cloud QoS violation adaptive mechanisms

with the proposed SFT algorithm.

A service level agreement (SLA) is established between the cloud service provider and cloud

consumer to guarantee cloud service performance and availability. QoS metrics are used to

measure the hosted cloud services in the data centre, with consideration of performance and

availability to ensure that QoS requirements are met and to prevent cloud QoS violation

occurrences. Such violation might occur due to events such as under-provisioning and

computation failure, such as faulty VMs, which could disrupt the daily operations of enterprises

or organizations using business or productivity software on the cloud.

Figure 1 Overview of the proposed system architecture

Basically, a cloud broker is responsible for managing the use, performance and delivery of cloud

services, as well as negotiating the relationships between cloud providers and cloud consumers

(Mell & Grance, 2011). The datacenter is the infrastructure to host several servers deployed for

running applications and processing workload submitted.

2.1. Cloud QoS Monitoring
With reference to Figure 1 (Steps 1-3), a workload request is submitted and received by the

cloud broker for processing. Subsequently, this request is allocated to a running VM by the

scheduler. The VM, hosted in a server located in the datacenter, processes the workload and

upon completion returns a response. The cloud QoS monitoring function is responsible for

measuring and collecting QoS metrics, such as response time and throughput.

1398 Preventing and Rectifying Cloud Quality of Service Violation Through
Adaptive Resource Scaling and Replication

2.2. Cloud QoS Violation Detection and Prediction

The cloud QoS detection and prediction (Figure 1, Step 4) function introduced by Wong et al.

(2018) derives 16 decision rules to determine QoS violation conditions based on response time

and throughput. The raw metrics of these, being in a quantitative range of values, are then

categorized into linguistic terms. Based on the fact that the relationship between response time

and throughput is in inverse order, the 16 decision rules, which are categorized into four main

decision outputs of certainly no violation, normal, probable violation and certain violation, as

shown in Table 1, are thus derived. The categorization of response time and throughput in

linguistic terms, with the classification and derivation of the 16 decision rules, has been proven

to be effective through a support vector machine classification multiplier.

Table 1 The 16 decision rules

Rule#

Response

Time

(seconds) -

linguistic

category

Response Time

(seconds) -

range of values

Throughput

(kbps) -

linguistic category

Throughput

(kbps) -

range of values

Decision Rules

1 Short 0.112–0.339 High > 0.881 Certainly No

Violation

2 Short 0.112–0.339 Normal 0.377–0.880 Normal

3 Normal 0.340–3.479 High > 0.881 Normal

4 Normal 0.340–3.479 Normal 0.377–0.880 Normal

5 Short 0.112–0.339 Low 0.124–0.376 Probable violation

6 Normal 0.340–3.479 Low 0.124–0.376 Probable violation

7 Long 3.480–4.340 High > 0.881 Probable violation

8 Long 3.480–4.340 Normal 0.377–0.880 Probable violation

9 Long 3.480–4.340 Low 0.124–0.376 Probable violation

10 Short 0.112– 0.339 Very Low 0–0.123 Certain violation

11 Normal 0.340–3.479 Very Low 0–0.123 Certain violation

12 Long 3.480–4.340 Very Low 0–0.123 Certain violation

13 Very Long > 4.341 High > 0.881 Certain violation

14 Very Long > 4.341 Normal 0.377–0.880 Certain violation

15 Very Long > 4.341 Low 0.124–0.376 Certain violation

16 Very Long > 4.341 Very Low 0–0.123 Certain violation

For example, in Table 1, Row 2 for rule #1, the response time is in the short time region, with a

range of values of 0.1120.339 s, while throughput is in the high value zone, with a range of

values greater than 0.881 kbps. This decision rule determines that the QoS is in the ‘certainly no

violation’ condition.

Based on these four main decision output categories, the main concern would be when QoS is

in a probable (Table 1, Rows 5-9) or certain (Table 1, Rows 10-16) violation state. This means

that when QoS is in a probable violation state, preventive measures should be deployed to

prevent further quality downgrade to the certain violation state, instead bringing the situation

back to the normal state. Likewise, when QoS is in a certain violation state, remedial action

Wong et al. 1399

should be taken immediately to rectify the situation and bring QoS back, if not to normal, but to

at least a probable violation state.

2.3. Cloud QoS Violation Adaptive Mechanism
Based on the 16 decision rules, we therefore propose a Scaling and Fault Tolerance (SFT)

algorithm implemented with adaptive mechanisms to provide preventive and remedial measures

for the two QoS areas of most concern, probable and certain violation conditions (Figure 1, Steps

5-6).

The SFT algorithm in pseudo code form is shown in Figure 2. It first takes the four decision

outcomes of certain violation, probable violation, normal and certainly no violation as input for

determining QoS violation conditions at 15 second intervals throughout the duration of the

running of the cloud service. The algorithm then provides preventive measures, remedial action

or decision scales based on the QoS decision outcome. For example, for a real-life SaaS, if the

workload submitted is being processed over a long time span due to under-provisioning, the SFT

algorithm will deploy a preventive measure of horizontal scaling to scale out the number of VMs

to balance the workload, hence guaranteeing the SaaS QoS. Additionally, the algorithm could

be applied to homogenous VMs without any modification required; refer to the flowchart in

Figure 3 (reading from top to bottom, left to right), for the flow of the SFT algorithm.

Figure 2 Pseudo procedure of the SFT Algorithm

As seen in Figure 3, after the SFT has determined the decision outcome to be certain violation

(CV), it then checks for CPU utilization. When this is fully utilized (CPUUtilization = 1), the

preventive measure of horizontal scaling is deployed by adding two new VMs to the hosting

server, which is to cater for under-provisioning events caused by workload fluctuation due to a

larger processing request. However, when CPU utilization is not fully utilized (CPUUtilization

< 1), this might indicate an event such as a faulty VM, so the remedial action of replication or

task retry is deployed. Additionally, any workload that has been scheduled to run on a faulty

VM will be evicted and the faulty VM will be destroyed. Subsequently, a new replicate VM

which has the same configuration and image of the faulty VM will be provisioned, started and

added to the hosting server. Workload that has been scheduled to be processed with the faulty

VM will be resubmitted to the replicate VM. Either the remedial or preventive measure process

will end if there is no further workload running on the VM; otherwise, it will route back to the

start.

1400 Preventing and Rectifying Cloud Quality of Service Violation Through
Adaptive Resource Scaling and Replication

Figure 3 Flowchart for the SFT algorithm

In the event that the decision outcome is probable violation (PV), the preventive measure of

horizontal scaling by provisioning a new VM to the hosting server is deployed. This is to cater

for under-provisioning caused by the large workload being submitted. Similarly, the process will

end if there is no further workload running on VM; otherwise, it will also route back to start.

In the case that the decision outcome is certainly no violation (CNV), the system will check the

VM status. If a VM is found to be idle for more than 30 seconds, only then will it be destroyed,

otherwise nothing is done. The 30 second waiting interval is to ensure that the VM remains idle

in the CNV condition with no new workload submission to provide for continuous availability

of the cloud services. The process will route back to the start if there is still workload running

on the VM.

3. EXPERIMENTAL SETUP

In order to evaluate the effectiveness of the proposed SFT algorithm, CloudSim Plus (Filho et

al., 2017) was used to simulate workloads resembling real-world QoS cloud measurement, as

seen in Table 2, which shows a description of the workload based on decision rule distribution.

Referring to Table 2, Columns 2-3 represent the configuration for generating workload which

resembles the workload pattern of running web services. Workload request is defined as the

number of million instructions per second (MIPS) needed by the VMs for execution of the

workloads. Workload size is the size of the workload to be processed. Columns 4-5 show the

response time and throughput values computed based on their workload characteristics on one

VM. Column 6 represents the frequency distribution of workload characterized by the decision

rule stated in Column 7. The last column, Column 8, represents the percentage of each category

of decision output; for example, 14%, 71%, 9% and 6% are the percentage distribution for

certainly no violation, normal, probable violation and certain violation respectively. These

distributions closely resemble real-world QoS measurement of cloud services (Zheng et al.,

2014).

Wong et al. 1401

To illustrate this further, for example in Table 2, Row 2, the workload request of 22000MIPS

accounts for 58% of the workload frequency distribution for the decision rule of certainly no

violation. The decision outcome of certainly no violation contributes 14% of total distributions

to the real-world QoS measurement of cloud services. A point to note is that not all workloads

based on the 16 decision rules could be simulated. For example, short response time and very

low throughput (Table 1, Rule#10) do not resemble a real-world QoS measurement of any cloud

service.

Table 2 Workload generation based on QoS decision rules

No
Workload

Request

(MIPS)

Workload

Size
(kb)

Response

Time (s)
Throughput

(kbps)

Workload
frequency

distribution
(%)

Decision

rules

Decision rules
frequency

distribution (%)

1 22000 0.3 0.327 0.916 58

Certainly No

Violation
14

2 21600 0.3 0.322 0.932 20

3 20700 0.3 0.308 0.973 8

4 18000 0.3 0.268 1.119 22

5 24600 0.3 0.366 0.819 43

Normal 71

6 31500 0.3 0.469 0.639 27

7 37000 0.3 0.551 0.544 15

8 44500 0.3 0.663 0.453 11

9 50500 0.3 0.752 0.399 4

10 59900 0.3 0.892 0.336 44

Probable

Violation
9

11 85600 0.3 1.275 0.235 18

12 105000 0.3 1.563 0.192 14

13 128000 0.3 1.906 0.157 14

14 149000 0.3 2.219 0.135 10

15 240000 0.3 3.574 0.084 52

Certain

Violation
6

16 460000 0.3 6.849 0.044 32

17 640000 0.3 9.530 0.032 14

18 911000 0.3 13.565 0.022 2

3.1. Experimental Setup

All the simulations were created using CloudSim Plus (Filho et al., 2017), a cloud toolkit for

generating cloud computing infrastructures and application services, with the sub datasets

derived from the WS-DREAM dataset, which consists of real-world QoS evaluation results from

142 users on 4,500 web services over 64 different time slices (Zheng et al., 2014). Under this

simulated environment, virtual machines (VMs) resembling cloud resources were made

available by the real cloud provider; for example, t2.medium of Amazon EC2 instances (AWS,

2018) was selected for use. This dual-core Intel Xeon 2.49 GHz CPU can execute 63000 million

instructions per second (MIPS), with 4096 MB memory and 100Mbps network bandwidth. The

number of VMs used was set at one at the start of the simulation as a baseline, and this number

was kept constant for all the experiments unless it was being scaled out by decisions made by

the SFT algorithm. The baseline for response time and throughput follows the normal

transaction workload, as shown in Table 2 (Items 5-9). To simulate the provisioning of both

VMs and workloads, time-shared policy (Calheiros et al., 2010) was implemented. In this policy,

the processing power (CPU Cores) is concurrently shared by the VMs across the same time

frame. For our experiments, each CPU Core was shared by two VMs, each taking up the

respective equally divided workload simultaneously. To simulate a faulty VM, CloudSim Plus

was used to provide a fault injection class to inject a faulty VM during the simulation runtime.

3.2. The Four Scenarios for Simulation
The experiments conducted were based on four scenarios. The SFT algorithm was executed

before and after the simulation of each scenario in order to gather relevant results for comparison

1402 Preventing and Rectifying Cloud Quality of Service Violation Through
Adaptive Resource Scaling and Replication

and evaluation; please refer to Figures 4a4d for the timeline of simulation and submission of

workloads.

The first scenario involved submission of a workload (Table 2, Rows 15-18) to the system every

15 seconds for 10 occurrences, as shown in Figure 4a. In this scenario, a preventive measure

was deployed to handle the workload causing certain QoS violation without any faulty VM

event. This experiment was repeated 30 times, with a total of 270 (10 occurrences excluding

the first x 30) random workload submissions, creating a certain QoS violation state in order to

test the SFT.

Figure 4 Simulation and workload submission timeline

The second scenario comprised submission of a workload (Table 2, Rows 5-9) to the system

every 15 seconds for three occurrences, as shown in Figure 4b. The injection of a faulty VM was

deployed at the 20th second of the simulation run time to cause a certain QoS violation condition.

In this scenario, VM failure was injected to simulate an event causing a certain QoS violation

condition in order to test the capability of the SFT in deploying remedial action to handle the

faulty VM. This experiment was repeated 30 times, with random submission of workloads.

In the third scenario, a workload (Table 2, Rows 10-14) was submitted to the system every 15

seconds for 10 occurrences, as shown in Figure 4c. This was to simulate workloads for probable

violation events and to test the SFT algorithm in handling preventive measures. The experiment

was repeated 30 times, with random submission of workloads.

The fourth scenario involved submission of a workload (Table 2, Rows 1-4) to the system every

15 seconds for two occurrences, as shown in Figure 4d. The aim of this scenario was to simulate

workloads in order to investigate the capability of the SFT algorithm in handling over-

provisioning cases when the system detects a QoS certainly no violation condition. This

experiment was repeated 30 times, with random submission of workloads.

3.3. Performance Evaluation of SFT Algorithm
The performance of the SFT algorithm was evaluated separately for each scenario using

performance metrics such as average response time, average throughput, number of VMs applied

and effective rate. Average response time represents the mean response time value collected for

Wong et al. 1403

each point of time from all the repeated experiments. Average throughput represents the mean

throughput value, also collected for each point of time from all repeated experiments. The

number of VMs applied indicates the total number of VMs running in the host server. The

effectiveness of the algorithm will vary according to the scenario being evaluated. Finally, the

effective rate of the algorithm is determined by how successful it is in preventing probable QoS

violation or rectifying cases of certain violation. The effective rate can also mean how successful

the algorithm is in removing idle VMs when no workload has been submitted for 30 seconds

when in a certainly no violation condition.

For deploying preventive measures, the SFT adds two more VMs (scales out) to the hosting

server when handling certain violation events without a faulty VM. Conversely, for remedial

measures, it applies fault tolerance techniques such as replication when handling certain

violation events with a faulty VM. The preventive measure of scaling out (adding one additional

VM) to the hosting server is deployed by SFT for probable violation events. This is to achieve

the goal of maintaining cloud QoS requirements. Removing an idle VM is executed through SFT

when a certainly no violation event is detected and there is no submission of workload for more

than 30 seconds. As a result, all possible decision outcomes of probable violation, certain

violation and certainly no violation scenarios are fully covered for performance evaluation.

4. RESULTS AND DISCUSSION

This section presents the experimental results based on the simulation of the four scenarios. For

the results of the first scenario, please refer to Figures 5a, 5b and 5c, which show average

response time, average throughput and number of VMs applied with CPU utilization

respectively before and after implementation of the SFT algorithm from all the 30 repeated

experiments conducted. As can be seen from Figure 5, the algorithm detected the occurrence of

certain violation at time 15 s and started to deploy a preventive measure by adding two more

VMs to the hosting server. By balancing the workload with newly added VMs, this therefore

prevented any certain violation cases from occurring in subsequent time frames. However, it

was observed that on 13 occasions (3 when the workload request was at 640000MIPS and 10

when at 911000MIPS), the SFT was not able to deploy preventive measures to bring the QoS

state back to probable violation or normal. Therefore, in general, SFT was effective 95% of the

time with regard to preventive measures in the first scenario. This result is still satisfactory, as

these two workload requests seldom occur.

Figure 5 Experimental results for first scenario

The experimental results of the second scenario can be seen in Figures 6a, 6b and 6c, which

display the average response time, average throughput and number of VMs applied with CPU

utilization respectively before and after implementation of the SFT algorithm in all the repeated

experiments conducted. As shown in Figure 6, remedial action was taken to replicate the faulty

VM when SFT detected a certain violation occurrence at the 20th second point. Re-submission

of the workload attached to the faulty VM was made at the 31st second by SFT when average

1404 Preventing and Rectifying Cloud Quality of Service Violation Through
Adaptive Resource Scaling and Replication

response time (Figure 6a), throughput (Figure 6b) and full CPU utilization (Figure 6c) resumed

operation. Based on the observations, SFT was able to perform replication for all the faulty VMs,

thus achieving a 100% effective rate for remedial action in the case of certain violation events.

Figure 6 Experimental results for second scenario

The experimental results of the third scenario are shown in Figures 7a and 7b, which display the

average response time and average throughput before and after implementation of the SFT

algorithm from all the repeated experiments conducted. As can be seen from Figure 7, the

algorithm detected the occurrence of probable violation at the 15th second and then deployed a

preventive measure by adding an additional VM to the hosting server. Therefore, balancing the

workload after the addition of a new VM prevented a further system downgrade to the certain

violation condition. However, based on the observations made from all the repeated

experiments, it was discovered that the SFT algorithm was not able to deploy preventive

measures on 30 occasions when the workload request was at 128000MIPS (15 times) and

149000MIPS (15 times). Therefore, it is considered to be effective close to 90% of the time in

relation to preventive measures in the third scenario. This result remains satisfactory, as these

two workload requests only contribute to around 2% of probable violation events out of the total

of 100%, including other normal, certainly no violation and certain violation events.

Figure 7 Experimental results for third scenario

For the experimental results of the fourth scenario, please refer to Figure 8, which displays the

number of VMs applied before and after implementation of the SFT algorithm in all the repeated

experiment conducted. As can be seen from the figure, the SFT algorithm waited for 30 seconds

(at the 60th second), only then removing the VM which was in an idle state accordingly. From

the observations made for all the repeated experiments, SFT was effective 100% of the time in

the fourth scenario.

Wong et al. 1405

A point to note is that most of the data centres consist of configurable computing resources, both

physical and virtual, which are connected and accessible through broad networks. This allows

cloud service providers to pool multiple computing resources together from data centres in

different locations to serve multiple consumers using a multi-tenant model, and to scale

computing resources according to cloud consumer demand (Mell & Grance, 2011). Hence, to

dynamically adjust scaling in or out, the resources should not represent an issue.

However, in our future research, the SFT algorithm should include a feature to intelligently

identify heavy or light workloads processed by each cloud application. In this way, heavy

workloads could be dynamically allocated to more, or just the right number of, VMs for

processing the workload without encountering QoS violation when the cloud platform is already

fully occupied by the running of other cloud applications. Likewise, the lighter workloads of

other applications could be allocated to fewer, or just the minimum number of, VMs for

processing the workload without encountering any QoS violations.

Figure 8 Experimental results for fourth scenario

5. CONCLUSION

In this paper, we have presented the design and implementation of a system that can perform

VM-scaling, replication and task retry. We developed a scaling and fault tolerance (SFT)

algorithm to deploy preventive measures or take remedial action based on QoS decision

outcomes with regard to response time and throughput. Experiments based on four scenarios to

measure the effectiveness of the algorithm in handling events such as faulty VMs and over- and

under-provisioning were conducted. Our experimental results show that the algorithm was

effective 90% to 100% of the time when handling probable violation events using a scaling

technique as the preventive measure; when taking remedial action using replication and task re-

submission as fault tolerance techniques; and in resolving over-provisioning. The SFT

algorithm, together with the 16 decision rules, thus contributes to an additional aspect of

detection, prediction, prevention and rectification measures of response time and throughput for

cloud QoS violations.

6. REFERENCES

Aruna, L., Aramudhan, M., 2016. Framework for Ranking Service Providers of Federated Cloud

Architecture using Fuzzy Sets. International Journal of Technology, Volume 7(4), pp. 643–

653

1406 Preventing and Rectifying Cloud Quality of Service Violation Through
Adaptive Resource Scaling and Replication

AWS (Amazon Web Services), 2018. Amazon EC2 T2 Instances –Amazon Web Services, Inc.

Available Online at https://aws.amazon.com/ec2/ instance-types/t2/, Accessed on July 20,

2018

Bardsiri, A.K., Hashemi, S.M., 2014. QoS Metrics for Cloud Computing Services Evaluation.

International Journal of Intelligent Systems and Applications, Volume 6(12), pp. 27–33

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R., 2010. CloudSim: A

Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of

Resource Provisioning Algorithms. Software Practice and Experience, Volume 41(1), pp.

23–50

Filho, M.C.S., Oliveira, R.L., Monteiro, C.C., Inacio, P.R.M., Freire, M.M., 2017. CloudSim

Plus: A Cloud Computing Simulation Framework Pursuing Software Engineering

Principles for Improved Modularity, Extensibility and Correctness. In: Proceedings of

IFIP/IEEE International Symposium on Integrated Network Management, 8-12 May, 2017,

pp.400–406

Ganesh, A., Sandhya, M., Shankar, S., 2014. A Study on Fault Tolerance Methods in Cloud

Computing. In: Proceedings of IEEE International Advance Computing Conference

(IACC), pp.844–849

Kuperberg, M., Herbst, N., Kistowski, J.V., Reussner, R., 2011. Defining and Quantifying

Elasticity of Resources in Cloud Computing and Scalable Platforms. In: Karlsruhe Reports

in Informatics, Volume 16, pp. 1–17

Lehrig, S., Eikerling, H. Becker, S., 2015. Scalability, Elasticity, and Efficiency in Cloud

Computing: A Systematic Literature Review of Definitions and Metrics. In: Proceedings of

the 11th International ACM SIGSOFT Conference on Quality of Software Architectures -

QoSA '15, pp. 83–92

Mell, P., Grance, T., 2011. The NIST Definition of Cloud Computing. NIST Special Publication

800-145, pp. 1–3

Wong, T.S., Chan, G.Y., Chua, F.F., 2018. A Machine Learning Model for Detection and

Prediction of Cloud Quality of Service Violation. In: International Conference on

Computational Science and Its Applications (ICCSA), LNCS, pp. 498–513

Wong, T.S., Chan, G.Y., Chua, F. F., 2019. Adaptive Preventive and Remedial Measures in

Resolving Cloud Quality of Service Violation. In: Proceedings of IEEE 33rd International

Conference on Information Networking (ICOIN 2019), 9-11 January 2019, Kuala Lumpur,

Malaysia, pp. 473–479

Zheng, Z., Zhang, Y., Lyu, M.R., 2014. Investigating QoS of Real-World Web Services. In:

IEEE Transactions on Services Computing, Volume 7(1), pp.32–39

