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ABSTRACT 

Most heavy duty mining electrical drives employ squirrel cage induction motors (SCIMs) 

which are subjected to various undesirable stresses. Therefore, condition monitoring of the 

SCIMs is indispensable for achieving production goals with minimum downtime in a fault-free 

working environment. Because bearing damage is the most frequently occurring fault in 

SCIMs, an effective fault detection scheme will aid in achieving production targets in an 

industrial mining scenario. In this regard, the present work intends to propose an effective fault 

monitoring algorithm, which is immune to supply frequency regulation, for the detection of ball 

bearing damage in an SCIM. Discrete Wavelet Transform (DWT) is used for the design of the 

fault detection scheme. Validation of the proposed scheme is done in a LabVIEW based 

laboratory interface. The complete analysis is carried out in MATLAB/ Simulink using a 5.5 

kW, 3-phase, 415 V, 50 Hz SCIM. 
 

Keywords:  Bearing fault; Condition monitoring; Discrete wavelet transform; Squirrel cage 

induction motor 

 

1. INTRODUCTION 

Squirrel cage induction motors (SCIMs) form an integral part of heavy duty mining electrical 

drives due to their low cost of procurement, ruggedness and low maintenance requirement. 

Regardless of this, a variety of undesirable stresses, such as bearing damage, eccentric running, 

rotor bar faults, and winding damage can hamper the working behavior of induction motors 

(IMs) (Vas, 1999) (Sinha et al., 2016), especially in the hazardous and dusty working 

environment prevalent in the mining industry. Studies reveal bearing damage to be the most 

frequently occurring fault SCIMs (Group, 1985; Albrecht et al., 1986; Gritli et al., 2017). Under 

normal operating conditions, small fissures gradually propagate to the surface generating 

detectable vibrations and increasing noise levels, which result in a localized fatigue 

phenomenon known as flaking or spalling. This contaminates the lubrication and causes 

localized overloading over the entire circumference of the raceway (Eschmann et al., 1958) 

(Riddle, 1955). Other external causes of bearing fault include contamination, corrosion, 

improper lubrication,  improper installation,  or brinelling. Brinelling, which is the formation of 
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indentations in the raceways as a result of deformation caused by static overloading, exposes 

the bearings to vibrations while stationary (Eschmann et al., 1958). In addition, misalignment of 

the bearing can be caused by defective bearing installation. 

Owing to such a wide range of ball bearing failure modes and causes in mines, condition 

monitoring becomes essential for increasing machinery availability, reducing consequential 

damage, and improving operational efficiency (Su & Chong, 2007; Choi et al., 2011). 

Mechanical vibration analysis techniques are commonly used to monitor the characteristic 

frequencies which are indicative of bearing damages to determine the condition of the bearing 

(Kumar et al., 2016). However, various studies demonstrate that stator current monitoring can 

provide the same indications without requiring access to the motor (Kliman & Stein, 1990; 

Kliman & Stein, 1992; Gritli et al., 2017). Vibration and current parameters, used for bearing 

condition monitoring, can also be analyzed using a variety of techniques. The most widely used 

being Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT) (Eren & Devaney, 

2001; Singh & Kazzaz, 2009). While the available literature extensively demonstrates the 

drawbacks associated with the use of FFT based analysis—the major concerns being its non-

applicability to non-stationary signal and transient analysis (Elkasabgy et al., 1992; Rodriguez 

et al., 2006; Siddiqui et al., 2015)—the implementation of DWT for the detection of bearing 

damage using starting current transient has been demonstrated (Eren & Devaney, 2001). 

Furthermore, wavelet transform can be used for the isolation and detection of dry bearing 

damage (Singh & Kazzaz, 2009). While the existing literature demonstrates the use of wavelet 

transform during startup transients, its applicability to signals under frequency regulation in 

steady state remains an unexplored area of research. Unfortunately, existing algorithms are in 

steady state remains an unexplored area of research. Unfortunately, existing algorithms are 

cumbersome, with sluggish execution—a condition which is exceedingly undesirable for in-

field fault diagnosis. 

This paper demonstrates the feasibility of ball bearing fault detection using DWT of stator 

current to be used as a viable detection tool for a motor subjected to supply frequency 

regulation in steady state. Furthermore, the present work proposes a simple DWT-based fault 

detection scheme for finding bearing damage in SCIMs while being immune to supply 

frequency regulation in steady state. The simple nature of this method allows it to be quickly 

executed, which is essential for effective condition monitoring. 

 

2. EFFECT OF BALL BEARING FAULT ON STATOR CURRENT SPECTRUM 

Eccentric running of the motor due to faulty ball bearing causes anomalies in air gap flux 

density, which induces characteristic vibrations that can be seen on the stator current spectrum 

(Schoen & Habetler, 1993; Gritli et al., 2017). This, in turn, affects the mutual inductances of 

the machine producing stator current harmonics with frequencies predicted by Equation 1 

(Kliman & Stein, 1990; Kliman & Stein, 1992; Bindu & Thomas, 2014). 
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Furthermore, the mechanical displacement resulting from the damaged bearing causes the air 

gap of the machine to vary in a manner similar to a combination of rotating eccentricities 

moving in both clockwise and counterclockwise directions. These variations generate 

characteristic frequencies in stator current spectrum at bngf  which is related to the vibrational 

and electrical supply frequencies as given by Equation 2. 
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vebng f.mff 
                                                                  

(2) 

 

The characteristic frequencies of ball bearings depend on bearing dimensions (Figure 1). 

 

 

Figure 1 Ball bearing dimensions 
 

In radially loaded bearings, the contact areas of the balls and raceways carry the heaviest loads 

causing most fatigue failures to involve these components (Mobley, 1990). The ball spin 

frequency is caused by the rotation of each ball about its center. Since a defect on a ball will 

contact both the inner and outer races during every revolution, the ball defect frequency, which 

is the cause of maximum damage in the bearings, is twice the spin frequency and can be written 

as Equation 3. 
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3. MODELING OF VARIABLE FREQUENCY FED SCIM AND BALL DEFECT 

This section presents the modeling and simulation of variable frequency fed SCIM and the 

modeling of ball bearing defect in the SCIM. 

3.1. D-Q Model of Squirrel Cage Induction Motor 

The induction machine d-q or dynamic equivalent circuit is shown in Figure 2. Krause’s model, 

as detailed in (Krause, 1986), is one of the most popular induction motor models derived from 

this equivalent circuit. The flux linkage modeling equations are given as Equation 4. 
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 (a)  (b) 

Figure 2 Krause’s dynamic D-Q equivalent circuit of SCIM 

 

The current and torque relations are given as Equations 5 and 6, respectively. 
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3.2. Modeling of SCIM under Frequency Regulation 

Line current of a 5.5 kW SCIM running at the rated speed (1425 rpm at 5% slip) is tapped out 

and scaled down (to 1/1000 of the original value) for DWT analysis. In practice the supply 

frequency varies within 49.2 Hz-50.3 Hz (i.e. roughly by ±1.5% from 50 Hz, as mentioned in 

Central Electricity Authority 2010 amendment). 

In this work, a worst-case scenario of ±4% regulation in the nominal frequency is generated by 

a slow varying sine wave of frequency 5 Hz and amplitude 2 V in each of the three phases to 

generate a non-stationary supply (Figure 3). This three-phase, 415 V, non-stationary voltage is 

fed to the 5.5 kW SCIM as designed in MATLAB/Simulink using the D-Q model approach. 
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Figure 3 Block diagram in MATLAB/Simulink for variable frequency voltage fed SCIM 
 

3.3. Modeling of Ball Bearing Damage 

Ball bearing damage produces a radial motion between the rotor and stator of the machine. The 

mechanical displacement which results from the damaged bearing causes the air gap of the 

machine to vary in a manner that can be described by a combination of rotating eccentricities 

moving in both clockwise and counterclockwise directions. This eccentric movement of the 

rotor induces characteristic frequencies in the otherwise sinusoidal air-gap flux. These 

characteristic frequencies are calculated as per Equation 1 (80 Hz and 20 Hz in the clockwise 

and counterclockwise direction, respectively, for k=1, i.e. principle slot harmonic). The 

introduction of these characteristic frequencies in the flux linkage block is used in the 

 odelling of ball bearing defects in the present work. 

 

4. SIMULATION AND ANALYSIS OF BALL DEFECT IN BEARING 

4.1 DWT Based Analysis 

DWT decomposes a signal  nX  into sub-bands known as detailed and approximated signals 

(Burrus & Guo, 1998) which correspond to the different frequency bands (Taher & Malekpour, 

2011). 
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The scaling function and the mother wavelet are defined as 
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DWT can provide coincident time and frequency information for the spectrum. Therefore, 

DWT based Multi-Resolution Analysis can be effectively used as an on-line condition 

monitoring tool. 

4.1.1. Choice of sampling frequency for DWT based analysis 

Sampling frequency and the maximum number of decomposition levels determine the 

frequency bands corresponding to the detailed and approximated signals, 
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 respectively (Taher & Malekpour, 2011), at each level obtained by using 

MRA. The frequency bands for various sampling frequencies are given in Table 1. 
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Table 1 Frequency bands of [dn]/[an] for various sampling frequencies 

(Taher & Malekpour, 2011) 

[dn]/[an] 
Sampling Frequency

 sF  (Hz) 

6200 6250 6300 6350 

[d1]
 1550-3100 1562-3125 1575-3150 1588-3175 

[d2]
 775-1550 781-1562 788-1575 794-1588 

[d3]
 

388-775 390-781 394-788 397-794 

[d4]
 194-388 195-390 197-394 198-397 

[d5]
 

97-194 98-195 97-197 99-198 

[d6]
 

48-97 49-98 49-98 49-98 

[d7]
 

24-48 25-49 25-49 25-49 

[d8]
 

12-24 13-25 13-25 13-25 

[a8]
 

0-12 0-13 0-13 0-13 

 

The desired sideband frequencies (i.e., 94 Hz and 194 Hz as per Equations 2 and 3) in the line 

current spectrum for SCIM under ball bearing damage lie in [d6] and [d5] coefficients, 

respectively. This corresponds to sampling frequencies in the range 6200 Hz to 6350 Hz. In 

practice, sampling frequency may not remain fixed owing to parameter variation in the sample. 

Any sampling frequency within the specified range is suitable for use in the proposed fault 

detection scheme. In the present work 6250 Hz was chosen as the sampling frequency.  

4.1.2.  Choice of mother wavelet and number of decomposition levels 

The choice of a suitable mother wavelet is crucial for the proposed fault detection scheme. 

‘sym31’ (correlation coefficient = 0.92 with stator current) is suitable for the present work 

(Shashidhara & Raju, 2013). Further, the maximum number of decomposition levels for the 

proposed scheme is obtained as follows (Shi et al., 2013): 
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Based on Equations 10 and 11, it is found that ‘sym31’ with 8th level decomposition satisfies 

the DWT of the stator current signal in the present work. 

4.1.2. Analysis of stator current signal 

The present work uses NSK 6208 ball bearings ( mmPD 60 , mm12BD   and Hz30f rm  ). 

The characteristic vibration frequency for ball defect (calculated as per Equation 3) is 144 Hz. 

This is reflected in the stator current spectrum at 94 Hz and 194 Hz around the principle slot 

harmonic (calculated as per Equation 2). Figure 4 shows [dn] and [an] for 8th level 

decomposition of non-stationary phase-a current signal under both the healthy and faulty cases 

when the motor is operating at rated load torque (i.e. 35 Nm). The analysis shows that [d1]-[d4] 

do not contain any substantial ripple due to the progressively smaller magnitude of the 

characteristic fault frequencies around higher order slot harmonics, while [d7], [d8] and [a8] 

represent the low frequency which do not affect the fault detection process (Figures 4a, 4b). 

The presence of significant ripples in [d5] and [d6] (Figure 4b) is due to the presence of ball 

bearing fault frequencies (194 Hz and 94 Hz) around the fundamental frequency (50 Hz) of line 

current spectrum corresponding to frequency bands of 98-195 Hz and 49-98 Hz respectively 
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(Table 2). Furthermore, Figure 4a shows no variation of [d5] which indicates the absence of the 

upper sideband frequency (194 Hz) for the healthy case. 

 

 
(a)                                                                    (b) 

Figure 4 [an] and [dn] obtained by DWT of phase-a current of 5.5 kW SCIM at rated load torque 

under frequency regulation for: (a) healthy bearing, (b) damaged bearing 

 

5. MODELING OF DWT BASED FAULT DETECTION SCHEME 
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Figure 5 Scheme for DWT based bearing damage detection of SCIM 
 

Figure 5 shows the scheme for DWT based ball bearing damage detection of SCIM. The SCIM 

is fed with a three phase, 415 V non-stationary source. The scaled down (1/1000) current of 

phase-a ( ai ) is used for DWT in the simulation study. ‘sym31’ is used for scrutinizing the non-

stationary current signal in ‘wavelet analysis’ block. The point to point standard deviation of 

[d5] obtained from the ‘wavelet analysis’ block is compared with the pre-fed values of standard 

deviation of [d5], obtained by analyzing the motor in the healthy state in the ‘comparator’ 

block. The standard deviation of [d5] obtained from the motor with damaged ball bearing 

running in real time is always higher than that of the motor in the healthy state which is 

indicative of the presence of fault. 
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6. REAL TIME VALIDATION 

This section details the real-time validation of the proposed bearing fault detection scheme in 

LabVIEW based SCIM laboratory interface. 

6.1.  LabVIEW-based Laboratory Interface 

The LabVIEW-based laboratory prototype for ball bearing detection of 5.5 kW, 3-phase, 415 V, 

4 pole SCIM and a damaged ball bearing is shown in Figure 6. The motor line current is sensed 

using a current sensor of LEM make in the Sensing module. This current is filtered, discretized, 

and digitized using an Analog to Digital converter in the data acquisition card (11V-30Vdc, 30 

W) for feeding into the LabVIEW interface for analysis. 

 

     
 (a)  (b) 

Figure 6 (a) Experimental setup of DWT based bearing damage detection of SCIM; 

(b) damaged ball of NSK 6208 ball bearing 

 

         
(a) (b) 

 

 

      

 (c)  (d) 

Figure 7 Experimental results: [d5] coefficient of DWT spectrum for (a) a faulty bearing; (b) a healthy 

bearing; (c) 5 V signal for a faulty bearing; (d) 0 V fault signal for a healthy bearing 

 

The real-time code for implementation of the bearing fault detection algorithm is generated in 

LabVIEW using a sampling frequency of 6.2 kHz and the ‘sym31’ mother wavelet. As per the 

fault detection algorithm, aberration in standard deviation of [d5] (Figure 7a) from pre-fed value 

(Figure 7b) gives a 5V signal (Figure 7c) in the Digital Storage Oscilloscope (DSO) as an 

indicator of a faulty bearing, whereas a healthy bearing, with no deviation from pre-fed values 

of [d5] induces a 0V signal in DSO (Figure 7d). Figure 7 validates the proposed bearing fault 

detection algorithm. 
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7. CONCLUSION 

The precarious working environment prevalent in mines increases the likelihood of damage to 

ball bearings. Quick detection is indispensable for reduced downtime of drive systems in 

underground mines. A DWT-based MRA of stator current for ball bearing damage detection is 

presented in the present work. The proposed fault detection scheme employs the standard 

deviation of level-five detailed coefficient [d5] from the pre-fed values of the same for the 

detection of ball bearing damage, based on the careful choice of an analyzing mother wavelet 

(‘sym31’ in the present work) and working sampling frequency (6.25 kHz in the present work). 

The proposed scheme is further validated in real time by a LabVIEW based 5.5 kW SCIM 

laboratory interface. The proposed scheme is also robust to ± 4% (approx.) supply frequency 

regulation and ± 1.5% (approx.) sampling frequency variation at a given supply frequency. The 

implementation of this proposed approach requires a minimal instrumentation system, ideal for 

the grimy and hazardous mine environment. 
 

8. NOMENCLATURE 

p  Number of machine poles 
qsds v,v  Stator voltage d-q component 

ef  Supply frequency (Hz) 
qrdr v,v  Rotor voltage d-q component 

vbng f,f  Characteristic frequency of current & 

vibration (Hz) 
mdmq F,F  Magnetizing flux linkage d-q 

component  

sl  Machine slip 
rs R,R  Stator and rotor resistance 

eccf  Characteristic frequency for 

eccentricity (Hz) 
lrls X,X  Stator and rotor leakage reactance 

rmf  Mechanical rotor speed (Hz) 
qsds i,i  Stator current d-q component  

m,k  1, 2, 3, … integer 
qrdr i,i  Rotor current d-q component 

bf  Ball defect vibration frequency [dn], [an] Approx. and detail coeffs. 

rbe ,, 
 

Stator, motor and rotor angular 

electrical frequency 
Le T,T

 
Electromagnetic and load torque 

(rad/s) 


 

Contact angle of balls & races  ,  Scaling function., mother wavelet 

d ,
q

 
Direct and quadrature axis n  Discrete sample number 

s , r  Stator and rotor variable J  
Moment of inertia (kg-m2) 

PD , BD  
Bearing pitch and ball diameter 

SF
 

Sampling frequency (Hz) 

ijF
 

Flux linkage ( dqi , and rsj , ) L  
No. of decomposition levels 



mlX
 











lrlsm X

1

X

1

X

1
1

 

fn
 

Decomposition level containing 

supply frequency 
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